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ABSTRACT 

Given a semi-infinite system of linear inequalities, including strict inequalities, 
it is shown that if every finite subsystem has a solution in R, then the entire 
system has a solution in the ordered field R(M) obtained by adjoining a trans- 
cendental greater than every real number. 

1. Introduction 

A semi-infinite system of  linear inequalities is a system of  infinitely many 

inequalities in finitely many variables, typically: 

(1) ai lx l  -[" " ' "  + as.x. > bi, i E J 

where a~j, b i ~ R and J is arbitrary. 

The essential new feature of semi-infinite systems as compared with ordinary 

finite systems is the possible presence of sequences of inequalities xx > 1, xl > 

, . . . .  

This suggests that one might obtain results about such systems by considering 

solutions involving infinite elements. In [1], Jeroslow and Kortanek considered 

the polynomial ring R [ M ]  with a lexicographic ordering and proved that if every 

finite subsystem of (1) had a solution in which xx,. . . ,  x, ~ R, then the entire system 

had a solution in which x~, ..., x ,  ~ R[M']. In this paper we show this result may 

be obtained using the Fourier-Dines-Motzkin elimination technique [2, pp. 11-20,]. 

We also extend the result to systems including strict inequalities. 
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2. The ring R[M] and the field R(M) 

As indicated, R[M] consists of the ring of polynomials with real coefficients 

with this ordering: P ~ Q iff l imu. . ,~P(M ) - Q ( M ) ~  O. It may be verified that 

this gives a commutative ordered ring without divisors of zero. The standard 

field-of-quotients construction may then be carried out to give an ordered field 

R(M). Note that if p~ , . . . , p , , � 9  satisfy a system (1), then the sequence 

pl(k) , . . . ,  p,,(k), k = 1,2,.-., is a weak solution to (1) in the sense of [3]. 

We shall study semi-infinite systems of inequalities which include strict 

inequalities: 

(2) a~lxl + "'" ai,,x,, ~_ bi, i E Jl 

allx I + ... flinX n > bi, i �9 J2 Jl  ~ J2 = ~ .  

The system xl > 0, xl < �89 xl < ~,... gives an example of a case where every 

finite subsystem has solutions yet the entire system has no solution in RIM].  

Note, however, that x = 1/M is a solution in R(M). The following is our main 

result. 

THEOREM 1. I f  every finite subsystem of (2) has a solution in the reals 

then (2) has a solution in R(M) of the form 

(3) ajM J + ... + a o + ... + a_kM -k, 

where j + k ~_ n. 

Proof of the theorem is given in Section 4. 

3. Shifting and Dedekind cuts in R[M] 

For k ~ 1, we define a linear operation, the k-shift, on RIM]  as follows: the 

k-shift of M j is M j+l for j ~ k, and M j for j < k. If p �9 RIM]  we denote the 

k-shift of p by ptk) and if A c RIM],  A <k) is the set of k-shifts of members of A. 

Note that if Pl, "", Pn �9 R IM]  then 

ailp~ k) + ... + ainp(n k) = (aitP 1 + ... + ainp,) (k) 

so that if Pl, "", P, satisfy (2) then so do p[k),..., p tk). We shall use A ~ B to mean 

that every member of A is greater than or equal to every member of B. (A Dedekind 

cut in RIM].) It is possible to have A _~ B and yet have no in-between element 

p E R [ M ]  with p _~ A and p _>_ B. Example: A = {�89 J~M, ...}, B = {1,2, ...}. 

LEtdMA 1. Suppose A, B c RIM]  and that A ~_ B. Then either 
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(i) there is a p <- A and >__ B or 

(ii) there is a k > 1 and p such that p < A ~k~ and p > B tk~. 

PROOF. It is sufficient to prove this for the case where every member of A is 

greater than or equal to zero. The other case may be reduced to this one by 

interchanging A and B after multiplying their members by - 1. We proceed by 

induction on the smallest degree of members of A. If A has members of degree 

zero (that is, real numbers) we may take p to be the greatest lower bound of such 

members and (i) holds. Suppose the theorem has been established when A has 

members of  degree k - 1 and that A has a member of degree k. Let a be the 

greatest lower bound of the set of r such that A has a member of the form rM ~ + 

lower-degree terms. 

Case 1. Neither A nor B has a member of the form aM k + lower terms. We 

set p = aM k and (i) holds. 

Case 2. A has a member of  this form but B does not. In this case p = aM ~ + t 

- M k is less than A ~ and greater than B tk~, so (ii) holds. 

Case 3. A has no such member but B does. Similar to Case 2, with 

p = a M k + t  + M  k. 

Case 4. Both A and B have members of the form aM k + lower terms. Form 

A' and B' by subtracting a M  k from members of A and B. We have A' > B' and 

A' and B' have members ofdegree k - 1, so we may apply the induction hypothesis. 

Q.E.D. 

We also need a linear operation, the k-slide, defined on members of R(M) of 

the form a i M  -~ + ... + a jM -j .  The k-slide o f M  - j  is M -J-1  f o r j  > k, and M - j  

for j < k. This is a reflection of  the k-shift, k-slides of solutions of (2) are also 

solutions. The result we need on k-slides is the following. 

LE~MA 2. Let A and B be subsets o f  R(M) of  the form a i M -  l + ... + akM-k,  

where k < n for  every member of  A t d  B. I f  A > B then 

(i) there is a p of the same form with p < A and p > B; or 

(ii) there are p, k such that p is less than the k-slide of A and #rearer than the 

k-slide o[ B. 

PROOF. Form A' and B' by multiplying the members of A and B by M n. Then 

by Lemma 1 there is a p in R I M ]  such that 
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(i) p < A ' a n d  p > B '  or 

(ii) p < A 'tJ) and p > B'<~). If(i) holds, we divide p by M n to obtain a member of 

R(M)  which is less than or equal to A and greater than or equal to B. If (ii) holds 

we divide p by M n§ ~ to obtain a member of R(M) which is less than the (n - j  + 1) 

slide of A and greater than the (n - j  + 1) slide of B. Q.E.D. 

If  a member of R(M) has the form (3) we shall call aiM j + ... + ao the 

polynomial part and a _ ~ M - 1 +  ... + a_k M - k  the infinitesimal part. We may 

extend our definition of k-shift and k-slide to elements (3) by taking the k-shift 

of the polynomial part or the k-slide of the infinitesimal part. We denote the 

k-slide of p e R(M) by p(-k). 

LEMMA 3. Suppose A, B c R(M) of the form (3) with k <= n for  every member 

of A k3 B. I f  A >= B then either 

(i) there is a p of  the form (3) with p <= A and p >= B or 

(ii) there is a k-shift or k-slide and p such that p < A (k) and p > B (k). 

PROOF. Clearly every polynomial part of a member of A is greater than or 

equal to every polynomial part of a member of B, so we may apply Lemma 1. 

If  (ii) holds then we obtain a p ~ R I M ]  which is less than A <k) and greater than 

B tk) for some k-shift. If (i) holds there is a p e R I M ]  which is less than or equal to 

the polynomial part of every member of A and greater than or equal to the 

polynomial part of every member of B. If  neither A nor B have members with 

polynomial part p, then p is less than or equal to A and greater than or equal to B. 

If  one but not both of A, B has a member with polynomial part p, then p __+ M -  ~ 

is less than A t-  1) and greater than B t-  ~) (recall that this is a 1-slide). Finally, if 

both A and B have members with polynomial part p, form A' and B' by subtracting 

p from such members and apply Lemma 2. 

4. Proof of Theorem 1 

The argument proceeds by induction on the number of unknowns in (2). Our 

theorem is obvious for systems with one unknown, so we will be done if we can 

prove the following reduction step. 

LEMMA 4. The system of  inequalities 

xn~_ai lx t  + " "  a jn - t xn - l  + bi, i e k t  

Xn > ailXl "1- "'" aen- 1Xn - 1 "l- b e, i e k 2 
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Xn <= aelxl  + "'" a~,_ ix ,_  i + bi, i s k 3 

X n < a i l x l  -I- . . .  a i n -  l X n -  1 "]- b i ,  i s k 4 

a i l X  1 -]- . . .  fl/n_lXn_ 1 ~ be, i s k s  

a n x l  + "'" a e , - l x , - 1  > be, i s k 6  
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has a solution with xt ,  . . . ,  x ,  o f  the f o r m  (3) i f  the fo l lowing  sys tem does: 

(4) 
dilX 1 -[- " "  + ain_lXn_ 1 -]- b e < a j i x  1 + ... + a j n _ l X n _  1 + bj, i s k  2, j s k 3  U k 4  

aelx I "t" "'" -I- Clin-lXn- 1 d- bi < a j lX l  + "'" + a j , - l X , - 1  + bj, i s k 1, j s k4 

a i l x  I + ... + a i , _ l x , _  1 + bi <= a j l x  ~ + ... + a y , _ l x , _  1 + by, i s k  1, j s k  a 

aelXl + "" + a s , - i x , - 1  >= be, i s  ks  

a e l X l  -]- "'" "~ a e n - l X n  - 1 > be, i s k 5. 

Note  that  any system (2) may be written in an equivalent manner  in the form 

(2'). Once this lemma is established it suffices to notice that  if  every finite sub- 

system of  (2') is consistent, then so is every finite subsystem of  (4), which has 

n - 1 unknowns.  

PROOF. Let Xl, . . . ,  x ,_  1 be a solution to (4). I f  k I t d / c  2 or  k a U k 4 is empty we 

obtain a solution to (2') by taking x n = • M j, for j sufficiently large. Otherwise 

we let A = {aelx I + ... + aen_lXn_ 1 -[- b e [ i s k  a W k 4 }  and 

B = {aelx I + ... + a i ,_ lX ,_  1 + b e [ i s k  I u k 2 }  

,.(k) . ~.(k) i s a ,  and apply Lemma 3. I f  (ii) holds, then x,  = p and x I = --1 , ' " , - , , - 1  = --,-1 

solution to (2'). I f ( i )  holds then x, = p and Xl = xl ,  "", x , -1  = x , _ l  is a solution 

to (2') with > replaced by __> and x, = p _ M - j  is a solution to (2') for sufficiently 

large j .  This completes the proof.  
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